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Abstract 14 
Present-day shortcomings in the representation of upper-tropospheric ice clouds in general 15 

circulation models (GCMs) lead to errors in weather and climate forecasts as well as account for 16 

a principal source of uncertainty in climate change projections.  An ongoing challenge in 17 

rectifying these shortcomings has been the availability of adequate, high-quality, global 18 

observations targeting ice clouds and related precipitating hydrometeors. In addition, the 19 

inadequacy of the modeled physics and the often-disjointed nature between model representation 20 

and the characteristics of the observed values have hampered GCM development and validation 21 

efforts from making effective use of the observations that have been available.  Thus, even 22 

though parameterizations in GCMs accounting for cloud ice processes have, in some cases, 23 

become more sophisticated in recent years, this development has largely occurred independently 24 

of the global scale observations.  With the relatively recent addition of satellite-derived products 25 

from Aura/MLS and CloudSat, there are now considerably more resources with new and unique 26 

capabilities to evaluate GCMs.   In this article, we illustrate the shortcomings evident in model 27 



 2 

representations of cloud ice through a comparison of the simulations assessed in the IPCC Fourth 1 

Assessment Report, briefly discuss the range of global observational resources that are available, 2 

and describe the essential components of the model parameterizations that characterize their 3 

“cloud” ice and related fields.  Using this information as background, we discuss some of the 4 

main considerations and cautions that must be taken into account in making model-data 5 

comparisons related to cloud ice, illustrate present progress and uncertainties in applying satellite 6 

cloud ice - namely from MLS and CloudSat - to model diagnosis, show some indications of 7 

model improvements, and finally discuss a number of remaining questions and suggestions for 8 

pathways forward. 9 
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1. Introduction  1 

Upper tropospheric ice clouds that cover large spatial scales and persist in time strongly 2 

influence global climate through their effects on the Earth’s radiation budget [Liou, 1976; 3 

Hartmann and Short, 1980; Ramanathan et al., 1989; Ramanathan and Collins, 1991; Randall 4 

and Tjemkes, 1991; Chen et al., 2000].  Many studies have pointed out that these clouds have 5 

influences through both their greenhouse and solar albedo effects with their relative influence 6 

depending strongly on their height, thickness, and optical and microphysical properties [Stephens 7 

et al., 1981; Hartmann and Doelling, 1991; Fu and Liou, 1992; Hartmann et al., 1992; Kiehl, 8 

1994; Miller, 1997].  Deep convective clouds – which account for a very small fraction of cloud 9 

area – contain considerable contributions from ice as well as other frozen hydrometeors [Krueger 10 

et al., 1995; Rossow and Schiffer, 1999; Del Genio and Kovari, 2002].  They play a crucial role 11 

in both weather and climate through vertical mixing and precipitation/latent heating, as well as 12 

through their connection to other larger-scale ice clouds such as precipitating anvil and non-13 

precipitation cirrus clouds [e.g., Luo and Rossow, 2004].  Characterizations of ice cloud 14 

properties have been made using satellites [Minnis et al., 1993; Liao et al., 1995b; a; Jin et al., 15 

1996; Rossow and Schiffer, 1999; Stubenrauch et al., 1999; Wylie and Wang, 1999; Li et al., 16 

2005] as well as in situ methods [McFarquhar and Heymsfield, 1996; McFarquhar et al., 2000]. 17 

Such data and analyses have improved our understanding of ice cloud processes, and guided the 18 

directions for developing improved parameterizations of ice cloud microphysics.  However, 19 

measurements of these ice clouds are still difficult to obtain due to the challenges involved in 20 

remotely sensing ice water content (IWC) and its vertical profile – including complications 21 

associated with multi-level clouds, mixed-phases and multiple hydrometeor types, the 22 

uncertainty in classifying ice particle size and shape for remote retrievals, the relatively small 23 
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time and space scales associated with deep convection, and the large dynamic range of cloud-1 

related ice that exists when considering both sub-visible cirrus and the tops/interiors of deep 2 

convective clouds.  Together, these measurement difficulties make it a challenge to characterize 3 

and understand the mechanisms of ice cloud formation and dissipation [Liou, 1975; Liou and Ou, 4 

1989; Wylie and Wang, 1997; Rossow and Schiffer, 1999; Luo and Rossow, 2004; Soden, 2004; 5 

Soden et al., 2004; Wu et al., 2005; Liu et al., 2007].  6 

The importance of obtaining a more comprehensive understanding and improved capability for 7 

modeling upper-tropospheric ice clouds cannot be underestimated as “cloud feedbacks remain 8 

the largest source of uncertainty” in determining Earth’s equilibrium climate sensitivity, 9 

specifically to a doubling of carbon dioxide [IPCC, 2007].  Some evidence for this uncertainty is 10 

given in Figure 1 that shows model-to-model comparisons of four different physical climate 11 

quantities, including cloud ice water path (IWP).   While it is understood that models exhibit 12 

significant systematic spatial-temporal biases with respect to quantities such as precipitation, 13 

water vapor and clouds, their depiction of the global-averaged values is quite good.  This stems 14 

from the fact that these quantities have had relatively robust long-standing observational 15 

constraints [Arkin and Ardanuy, 1989; Rossow and Schiffer, 1991; Stephens et al., 1994; Xie and 16 

Arkin, 1997] as well as indirect measurement constraints via top of the atmosphere radiation 17 

measurements [Gruber and Krueger, 1984; Kyle et al., 1993; Smith et al., 1993].  In contrast, 18 

robust global (or globally representative in-situ) observations of cloud ice, particularly vertically-19 

resolved values have not been available.  Despite significant efforts to derive even IWP 20 

measurements from passive and nadir-viewing techniques, the large optical thicknesses, multi-21 

layer structure and mixed-phase nature of many clouds makes the estimates from these 22 

techniques very uncertain [Stephens et al., 2002; Wu et al., 2006].   The sparse sampling of in-23 
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situ observations and poor probing capabilities of nadir-viewing passive satellite IWC/IWP 1 

measuring techniques are highlighted in the schematic of Figure 2 in the context of the 2 

complexities of a precipitating and/or multi-layer cloud system.  The ramifications of this poor 3 

constraint for cloud ice, even IWP, are evident in the much larger model-to-model disagreement 4 

for globally-averaged cloud ice shown in Figure 1.  There is a factor of 20 difference between the 5 

largest and smallest values, and even when the two largest outliers are removed, there is still a 6 

factor of about 6 between the largest and smallest values.  As expected, these differences are 7 

exacerbated when considering the spatial patterns of the time-mean values shown in Figure 3; in 8 

some regions up to nearly two orders of magnitude.  For a quantity as fundamental and relatively 9 

unambiguous as cloud ice mass, one that also has significant import within the context of climate 10 

change and its associated model projection uncertainties, it is critical that this level of model 11 

uncertainty be reduced.   12 

Fortunately, there are new observational resources recently established that can be expected to 13 

lead to considerable reduction in the uncertainties associated with model representations of 14 

upper-tropospheric cloud ice.  Specifically, these include the Microwave Limb Sounder (MLS) 15 

on the Earth Observing System (EOS) Aura satellite, and the CloudSat and CALIPSO satellite 16 

missions, all of which fly in formation in what is referred to as the A-Train [Stephens et al., 17 

2002].  Based on radar and limb-sounding techniques (see Figure 2), these new satellite 18 

measurements provide a considerable leap forward in terms of the information gathered 19 

regarding upper-tropospheric cloud ice water content as well as other macrophysical and 20 

microphysical properties.  In this article, we briefly describe the current state of GCM 21 

representations of cloud ice and their associated uncertainties, the nature of the new 22 

observational resources for constraining cloud ice values in GCMs, the challenges in making 23 
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well-posed model-data comparisons, and prospects for near-term improvements in model 1 

representations.  In section 2, we describe the satellite observations of IWP and IWC that are 2 

discussed in the article, with an indication of the relative strengths and weaknesses of the 3 

different retrieval methodologies and sensitivities.  In section 3, we briefly describe the model 4 

resources that are examined and provide a rudimentary description of the various levels of 5 

complexity regarding model treatments of cloud ice. For both IWP and IWC, and for both the 6 

observations and the models, it is more or less understood that “ice” represents all frozen 7 

hydrometeors, which can include cloud ice – which is typically suspended or “floating”, and ice 8 

mass precipitating forms such as snow and graupel.  However, such distinctions are often not 9 

clearly made or are fuzzy, and a principle focus of this article is to help articulate where and how 10 

such distinctions are made and matter for model-data comparisons.  In section 4, we present the 11 

results of the model data comparisons, with discussions regarding sampling, sensitivity, model 12 

representation, etc.  In section 5, we conclude with a summary and discuss needs regarding 13 

future space-based retrievals and directions for model diagnosis and improvement.  14 

2. Satellite Observations 15 

In this section, we describe the satellite observations that are illustrated and discussed in this 16 

paper.  To highlight a critical difference in capabilities, the observations are categorized as either 17 

passive nadir-viewing or radar/limb sounding.  This distinction conveys a sense of their 18 

capabilities to account for vertical structure, namely in terms of being able to deal less 19 

ambiguously with multiple cloud levels and/or mixed-phase clouds.  This leads to a pragmatic 20 

distinction of whether the satellite retrieval provides an estimate of (column-integrated) ice water 21 

path (IWP; gm m-2) and/or has the capability to provide an estimate of (vertically-resolved) ice 22 

water content (IWC; mg m-3). Given that this study mainly focuses on the new capabilities and 23 
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the associated uncertainties of the CloudSat and MLS retrievals, more details are provided 1 

regarding their methods and products.   The passive nadir-viewing products are only referenced 2 

briefly and therefore the discussion below only provides highlights with many details left to the 3 

referenced literature.   4 

a) Passive Nadir-Viewing  5 

i) ISCCP 6 

The International Satellite Cloud Climatology Project (ISCCP) provides an estimate of ice cloud 7 

water path (IWP) values based on measurements in the visible (VIS; 0.6 µm) and “window” 8 

infrared (IR; 11 µm).  Because VIS measurements are used, results are obtained only in daytime 9 

(at 3 hr intervals) but are global except for the portions of the polar regions. The intrinsic 10 

resolution of the radiance measurements is determined by the pixel (field-of-view) size, about 5 11 

km, and the sampling interval of about 30 km. After identifying cloud pixels, the cloud visible 12 

optical thickness (J) and cloud top temperature (TC) are retrieved from the VIS and IR employing 13 

a radiative transfer model. The cloud top temperature is corrected for the transmission of IR 14 

radiation from below based on the values of J, the surface temperature (TS) and the atmospheric 15 

temperature and humidity profile. The retrieval of J is based on one of two microphysical 16 

models, one for liquid and one for ice clouds. The phase of the cloud is determined by the value 17 

of TC; if TC < 260 K, the whole cloud is assumed to be an ice cloud. The microphysical model 18 

for ice clouds assumes a fractal particle shape with an aspect ratio of unity and an effective 19 

radius (rE) = 30 µm and a size distribution variance of 0.1. Thus, the value of IWP can be 20 

determined from product of J, rE and a coefficient that relates geometric cross section to volume 21 

for the assumed particle shape: for ice clouds in the ISCCP dataset, IWP (gm m-2) = 10.05 J.  For 22 
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additional details and discussions of uncertainties, see Rossow and Gardner [1993], Rossow and 1 

Schiffer [1999], Lin and Rossow [1996], Jin and Rossow [1997] and Han et al. [1999]. Annual 2 

mean ISCCP IWP values are shown in Figure 4. 3 

ii) NOAA/NESDIS – AMSU-B/MHS 4 

The NOAA/NESDIS IWP algorithm uses the measurements from the Advanced Microwave 5 

Sounding Unit – B (AMSU-B) and the Microwave Humidity Sounder (MHS) instruments to 6 

simultaneously retrieve IWP and ice particle effective diameter, De [Zhao and Weng, 2002; 7 

Ferraro et al., 2005], through characterizations of the scattering properties of ice cloud. The first 8 

step of the retrieval is to derive De from a regression relation with the scattering parameter ratio 9 

of 89 GHz and 150 GHz. The relation was established using simulated data from a radiative 10 

transfer model. Then IWP is computed from the retrieved De and the scattering parameter of 11 

either 89 GHz or 150 GHz depending on the size of De. The retrieval can be done in all-weather 12 

conditions, during day or night, and has relatively high temporal coverage with up to 10 13 

measurements per day owing to the five Polar Orbiting Environmental Satellites (POES) 14 

satellites (NOAA-15, -16, -17, -18, and MetOp-A). The NOAA IWP annual mean is shown in 15 

Figure 4. Its low bias relative to the other products shown is possibly due to two main reasons: 16 

scene screening criteria, which may bias the result, and insensitivity to small ice particles - in this 17 

case, less than 0.4 mm in size which is fairly large for many suspended cloud ice particles. The 18 

main screening criteria are that the scene be free of snow cover, and the brightness temperature 19 

at 89 GHz is higher than 150 GHz (due to the fact that the depression of brightness temperature 20 

increases with frequency from the scattering effect when atmospheric ice is present).  21 
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iii) CERES - MODIS 1 

To determine IWP, the Clouds and the Earth’s Radiant Energy System (CERES) algorithms 2 

[Wielicki et al., 1998] first explicitly classify each 1-km Moderate Resolution Imaging 3 

Spectroradiometer (MODIS) cloudy pixel as ice or water based on the cloud temperature and the 4 

goodness of the match between the observed spectral radiances at three wavelengths and model 5 

calculations of the radiances using several different ice and water particle sizes [Minnis et al., 6 

1995; Minnis and al., 2007].  The models use a set of hexagonal ice column distributions to 7 

represent ice cloud particles [Minnis et al., 1998].  IWP is computed as a function of the product 8 

of the retrieved effective ice crystal size and optical depth for each pixel. Optical depth is limited 9 

to a maximum of 128 in the current CERES editions. The retrieval assumes that the entire cloud 10 

column is composed of ice. Although good agreement is found between ground-based cloud 11 

radar and the CERES retrievals of IWP for relatively thin cirrus clouds (optical depths < 4) with 12 

no underlying water clouds [Mace et al., 2005], validation of IWP for thick clouds has not yet 13 

been performed, primarily due to a lack of reference data. Few ice clouds with optical depths less 14 

than 0.3 are detected by the CERES analysis [e.g., Chiriaco et al., 2007], and while such clouds 15 

account for a significant portion of the ice-cloud cover, they contribute very little to the global 16 

IWP. More significant is the impact of multi-layered clouds on the IWP retrievals. Huang et al. 17 

[2006] and Minnis et al. [2007] showed that the assumption of the entire cloud column as ice 18 

leads to overestimates in IWP of roughly 50% in multi-layered cloud systems. Thus, if one 19 

assumes that half of all ice clouds overlap liquid clouds, then global estimates of IWP from 20 

passive visible, infrared, and near-infrared measurements are likely to be overestimated by 21 

around 25%. The data illustrated in Figure 4 use averages of IWP derived using Terra MODIS 22 

data taken for solar zenith angles less than 82°. The means are multiplied by the average ice 23 



 10 

cloud fraction for each region to obtain all-sky IWP. In non-polar regions, the results correspond 1 

to 1030 LT. 2 

iv) MODIS 3 

The MODIS cloud optical and microphysical retrievals [Platnick et al., 2003] are part of the 4 

archived MOD06 and MYD06 products (for Terra and Aqua MODIS, respectively) and use 5 

techniques similar to the CERES algorithm, though there are some differences, including the 6 

methods and data used for cloud masking [Ackerman et al., 2008; Frey et al., 2008, see also 7 

documentation at modis-atmos.gsfc.nasa.gov/products_C005update.html]. Determination of the 8 

thermodynamic phase of the cloud water uses a combination of infrared and shortwave infrared 9 

(SWIR) spectral tests [King et al., 2004]. The ice cloud models used for the retrievals are based 10 

on in situ observations from a variety of cloud measuring campaigns and include size 11 

distributions with varying habit combinations as a function of size [Baum et al., 2005]. The 12 

MODIS retrievals have been compared with the ground-based studies of Mace et al. [2005] and 13 

successful retrievals for ice clouds with optical thicknesses less than about 0.7 were less frequent 14 

than for CERES-MODIS however retrieval uncertainties in that range can be quite large. The 15 

ground-based and aircraft studies of Chiriaco et al. [2007] found similar conclusions.  Figure 4 16 

shows the mean global IWP from Aqua MODIS (generated from monthly Level-3 [King et al., 17 

2003] files and weighted by the ice cloud fraction to provide all-sky means. In the Level-3 18 

product, monthly aggregations are derived from daily aggregations that include pixels from all 19 

orbits that contribute to the 1o grid box, i.e., a true daily average and not an instantaneous one, 20 

though differences only occur poleward of about 30° due to the MODIS swath and become more 21 

significant in polar regions. A multilayer flag is generated in the processing but was not used to 22 

exclude pixels in the IWP values presented here. 23 
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b) Vertically-Resolving: Radar and Limb Sounding  1 

i) MLS 2 

The MLS onboard the Aura satellite, operational since August 2004, has five radiometers 3 

measuring microwave emissions from the Earth’s atmosphere in a limb-scanning configuration 4 

to retrieve chemical composition, water vapor, temperature and cloud ice. The retrieved 5 

parameters consist of vertical profiles on fixed pressure surfaces having near-global (82°N-82°S) 6 

coverage.  In formation with the rest of the so-called A-Train constellation of satellites, Aura has 7 

equatorial crossing times of approximately 1:30am and 1:30pm.  The retrievals for IWC are 8 

provided at 100, 147, 215 and 316 hPa, where the latter is still experimental.  Below about 250 9 

hPa, contributions from mixed-phase clouds and stronger water vapor emission, particularly in 10 

the tropics, make the retrievals more uncertain. The MLS IWCs are derived from cloud-induced 11 

radiances (CIR) using modeled CIR-IWC relations based on the MLS 240 GHz measurements. 12 

Single IWC measurements from MLS at 147 and 215 hPa have a vertical resolution of ~3.5 km 13 

and a horizontal along- and cross-track resolutions of ~160 and ~2 km, respectively.  The data 14 

presented in this article uses MLS version 1.5 (except that in Figure 7 which uses version 2.2) 15 

IWCs [Livesey et al., 2006], which are very similar to the values used and discussed in Li et al. 16 

[2005].  In this version, the estimated precision for the IWC measurements is approximately 0.4, 17 

1.0 and 4.0 (mg m–3) at 100, 147, and 215 hPa, respectively, which account for combined 18 

instrument plus algorithm uncertainties associated with a single observation.  MLS is thought to 19 

be sensitive to IWC between about 2 and 50 mg/m3
.   It is important to note that the MLS IWC 20 

data has yet to be comprehensively validated. A detailed description and preliminary validation 21 

of the MLS IWC retrieval can be found in Wu et al. [2006; 2007].   22 
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Unless otherwise noted, the mean MLS values shown are computed from the total IWC amounts 1 

divided by the total number of measurements (including cloud free conditions) and binned onto a 2 

4°× 8° latitude-longitude grid. While MLS retrievals are based on limb sounding, and thus 3 

provide some depiction of vertical structure, they cannot provide a robust estimate of total IWP 4 

since it does not sample the entire column.  Figure 5 illustrates MLS’ estimate of annual mean 5 

IWC at 215 hPa and the zonal average of their vertically-resolved values which essentially 6 

includes levels 100 hPa, 147 hPa, 215 hPa and 316 hPa.  Very important to this study is the 7 

interpretation of what components of the frozen hydrometeors (e.g. snow, cloud ice) are 8 

represented in MLS IWC retrievals.  Because in high IWC cases large hydrometeors produce 9 

strong attenuation, MLS cannot penetrate the entire cloud and its sensitivity to cloud ice begins 10 

to saturate. The saturated/degraded measurements significantly underestimate the IWC in these 11 

cases, which in turn makes MLS less sensitive to clouds with large amount of hydrometeors.  A 12 

qualitative interpretation is that MLS tends to saturate for cloud systems that have significant 13 

amounts of larger frozen hydrometeors and thus tend to only reflect distributions – in magnitude 14 

– that are more characteristic of cloud ice alone.  15 

ii) CloudSat 16 

The Cloud Profiling Radar (CPR) on the CloudSat satellite is a 94 GHz, nadir-viewing radar 17 

measuring backscattered power from the Earth's surface and particles in the atmospheric column 18 

as a function of distance [Stephens et al., 2002].  Measurements of radar backscatter are 19 

converted to calibrated geophysical data quantities (radar reflectivity factor), which are then used 20 

in retrievals of cloud and precipitation properties such as ice water content (IWC).  During each 21 

160 ms measurement interval, the CPR data are collected into a single vertical profile of 22 

backscattered power sampled over 125 range bins measuring 240 m each, creating a total data 23 
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window of 30 km.  The distance from the satellite to the data window changes as a function of 1 

orbital location in order to guarantee that the window includes the Earth's surface, because 2 

surface reflectivity is a useful measurement in its own right and also serves as a constraint in 3 

some retrieval algorithms.  Because the CPR does not scan, measurements consist of vertical 4 

profiles along the satellite ground track (over 37,000 per orbit), providing a vertical cross section 5 

of clouds and precipitation in the atmosphere.  The CPR footprint is oblong, due to the along-6 

track motion during the 160 ms measurement interval, with 6-dB dimensions of approximately 7 

1.3 km across-track and 1.7 km along-track (with a slight dependence on latitude).  The 8 

minimum detectable reflectivity is approximately -30 dBZ (varies slightly with location, season, 9 

and background).  CloudSat orbits as part of the A-Train constellation of satellites, following 10 

approximately one minute behind Aqua, 15 seconds ahead of CALIPSO, and about 14 minutes 11 

ahead of Aura/MLS, although the forward limb sounding retrieval of MLS reduces the separation 12 

of samples to about 7 minutes.  CloudSat has been operational since June 2006. 13 

The current CloudSat retrieval for ice water content (IWC) (version 5.1, contained in release 4 14 

[R04] of the CloudSat 2B-CWC-RO data product) uses an optimal estimation approach to 15 

retrieve parameters of the ice cloud particle size distribution based on measurements of radar 16 

reflectivity [Austin et al., 2008]. A priori data constructed from a database of cloud 17 

microphysical measurements constrain the solution where the measurements cannot; the a priori 18 

data values are selected as a function of temperature, which is available to the retrieval based on 19 

ECMWF model data.  The retrieval assumes a lognormal size distribution of cloud particles, 20 

retrieving all three distribution parameters for each radar resolution bin and calculating IWC and 21 

other quantities from the retrieved parameters.  A similar retrieval is performed for liquid water 22 

content (LWC); the composite profile contained in the 2B-CWC-RO product is obtained by 23 
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using the LWC retrieval for bins warmer than 0°C, the IWC retrieval for bins colder than -20°C, 1 

and a linear combination of the two in the intermediate temperature range.  The minimum 2 

detectable IWC is estimated to be approximately 5 mg m-3, depending on the distribution 3 

parameters.  A number of validation studies are examining the accuracy and performance of the 4 

CloudSat IWC retrieval compared to other algorithms and other platforms (comparisons to MLS, 5 

CRM studies, etc.). The annual mean IWP estimate from CloudSat is shown in Figure 4.  Evident 6 

is that it is biased high relative to the other products, particularly in the tropical regions. Figure 5 7 

illustrates CloudSat’s estimate of annual mean IWC at 215 hPa and the zonal average of their 8 

vertically-resolved values which in this case include retrievals through the whole column.  While 9 

the IWC retrieval algorithm does not consider larger species such as snow and graupel explicitly, 10 

the radar will certainly see these larger particles due to the powerful dependence of radar 11 

reflectivity on particle size (D6 for Rayleigh particles, but less as particles move to the Mie 12 

scattering regime).  Efforts are underway to determine the accuracy of the retrieved IWC values 13 

in the presence of these larger particles.  Separate retrievals designed specifically for snow are 14 

also in preparation as experimental products.  15 

iii) CALIPSO 16 

The A-train also includes the Cloud – Aerosol LIDAR Infrared Pathfinder Satellite Observations 17 

(CALIPSO) instrument that is also expected to provide estimates of IWC based on lidar 18 

backscatter [Winker et al., 2004; Vaughan et al., 2004.]. In this case, the horizontal and vertical 19 

resolutions will be about 60 km and 1 km, respectively, and the sensitivity range is expected to 20 

be about 0.03 and 100 mg/m3
.   At the time of this writing the CALIPSO IWC product is yet to be 21 

released.  22 
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c) Satellite Summary 1 

One important distinction between the radar/limb-sounding and the nadir-viewing passive 2 

products discussed above is that the sampling of the former is only based on a single sub-orbital 3 

track profile, rather than a swath or multi-satellite product.  Thus while the former gain in terms 4 

of vertically-resolved information, and in some cases higher horizontal resolution, their 5 

combined spatial-temporal sampling is considerably less. 6 

The brief descriptions of the satellite data discussed above are only meant to highlight in a very 7 

brief manner the different techniques and their associated gross strengths and weaknesses.  More 8 

detailed discussion of the techniques and shortcomings, along with pertinent validation 9 

procedures and results are given in the references cited above, see also Wu et al. [2007; 2008].  10 

Overall, there are three messages to be conveyed from the above discussion.  The first is that, 11 

until recently, the availability of global cloud ice estimates was limited to IWP based on passive 12 

infrared or microwave techniques (e.g., NOAA, CERES, MODIS, ISCCP).  These products’ 13 

known limitations and uncertainties, including their limited intercomparison and validation, have 14 

hampered their use in constraining modeled cloud ice values. However, it is noteworthy that the 15 

few observed satellite estimates of IWP that have been available for a number of years tend to 16 

exhibit agreement as good, and probably better, than the GCMs utilized in the most recent IPCC 17 

assessment (Figure 3).  The second message is that more recent measurement strategies (e.g., 18 

limb-sounding and radar) are better equipped to probe and characterize internal cloud properties, 19 

such as vertical profiles of IWC, in addition to obtaining IWP. However, at first glance there 20 

appears to be considerable disagreement between these two new estimates of “cloud” IWC as 21 

well as disagreement between CloudSat IWP and those based on passive techniques.  This raises 22 

the third message, considerable caution has to be applied when comparing these estimates due to 23 
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the various sensor and algorithm sensitivities.  It is this latter issue that is a focal point of this 1 

article, namely in terms of understanding the nature of the ice water being measured and 2 

judiciously using these estimates for model diagnosis and validation.  3 

3. Modeled Values 4 

In a manner analogous to the previous section, the discussion in this section is meant to briefly 5 

describe the considerations typically in place within a GCM that account for the simulation of 6 

frozen hydrometeors in the atmosphere – both cloud ice and precipitating frozen particles. 7 

Relevant concepts and important distinctions include convective versus non-8 

convective/stratiform clouds, diagnostic versus prognostic parameterizations, single versus 9 

multiple hydrometeor species, and single versus multi-moment characterizations.  These issues 10 

are highlighted below and then the features of the ice-cloud parameterizations for the GCMs 11 

examined in this study are briefly described. 12 

a) Overview 13 

In GCMs, the atmospheric processes associated with convective clouds and non-convective 14 

clouds are artificially separated into cumulus convection and stratiform cloud schemes. For 15 

processes such as cumulus convection and cloud microphysics that occur at scales smaller than 16 

the GCM grid resolution (typically 50-200km), specific cloud variables are determined as a 17 

function of variables that are defined at the grid scale, leading to a so-called “parameterization”. 18 

Most GCMs (excluding CRM-like frameworks described below) parameterize deep convection 19 

based on a convective mass fluxes approach.  In this approach, temperature and humidity profiles 20 

are adjusted to account for heat sources and moisture sinks directly induced by the convective 21 

mass flux [Arakawa and Schubert, 1974; Tiedtke, 1989; Gregory and Rowntree, 1990; Zhang 22 
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and McFarlane, 1995].  Important to note is that due to the observed small spatial scales of 1 

cumulus convection, the influence they have on cloudiness and thus radiation has often been 2 

neglected with the main objective only being their direct impact on humidity and temperature via 3 

latent heating.  Due to the large spatial scales of stratiform clouds, GCMs have generally 4 

accounted for “cloudiness”, and its effect on radiation, via this part of the model’s 5 

parameterization.  6 

Studies have shown that non-convective stratiform clouds (e.g., widespread precipitating anvil 7 

clouds and cirrus outflow) can be produced by the detrainment of condensed water from cumulus 8 

convection.  Such connections within a modeling context have been taken into account by 9 

coupling stratiform cloud and cumulus convection processes in GCMs [Tiedke, 1993]. More 10 

specifically, a link is made by including the effects of convection on cloud generation (i.e., 11 

convective detrainment as a source of large-scale cloud) and allowing dissipation of cloud 12 

particles directly during their formulation. This technique originates from attempts by Arakawa 13 

and Schubert [1974] to allow detrainment from convective cumulus towers to serve as a source 14 

for non-convective stratiform clouds. In general, non-convective stratiform clouds and their 15 

condensates are formed, maintained and dissipated by many processes such as small-scale 16 

turbulence, large-scale vertical motion, convection and cloud microphysical processes. 17 

Therefore, any coupling between convective and stratiform clouds requires reliable 18 

parameterizations of microphysical processes within the model’s non-convective regions of 19 

stratiform clouds.  20 

When modeling ice clouds, several processes must be considered in cloud schemes: the 21 

formation (e.g., nucleation, deposition) and possible sedimentation of clouds, the growth and 22 

interactions (e.g, deposition and riming, aggregation) and falling out of precipitation, the 23 
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evaporation/sublimation of both clouds and precipitation, and possibly advection of clouds and 1 

precipitation.  Due to computational considerations as well as our incomplete knowledge of 2 

cloud-ice and related fields and their associated processes, most GCMs utilize fairly simple 3 

representations of ice processes. Figure 6 is a highly simplified schematic illustrating the most 4 

rudimentary features and considerations in these representations.  It mainly distinguishes the 5 

highly simplified forms in typical GCMs (e.g., Figure 3) used for global weather forecasting as 6 

well as many forms of climate simulation (left) versus a somewhat common next level of 7 

sophistication (right). In the former, there is consideration of only a single species of condensate, 8 

“floating” cloud ice.  Processes within the parameterization – relying on the large-scale fields – 9 

lead to the development and dissipation of the clouds.  In some cases, the processes are treated 10 

rather empirically, and are implicit, in others they are more explicitly represented [Jakob, 2002].  11 

Important in this class of parameterizations is that a fraction of condensate is typically assumed 12 

to have grown to a mass/particle size large enough to be considered precipitation, and is assumed 13 

to immediately fall out – albeit it can moisten lower layers through evaporation in this fall out 14 

process.  In such cases, the GCM typically carries two primary cloud variables, horizontal cloud 15 

fraction and cloud condensate mass – where the latter is considered “floating” cloud ice.  Such a 16 

formulation is also referred to as a single-moment cloud scheme, because the number 17 

concentration of the ice particles is prescribed and only the mass is predicted.  More complex 18 

formulations, which are more common in regional and cloud-resolving models (CRMs), include 19 

double-moment parameterizations that also predict number concentrations, or even more 20 

computationally expensive spectral and bin microphysics that include multiple discrete ice 21 

particle sizes, number concentrations and explicit particle-particle interactions. 22 
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Another level of complexity beyond the simplified single-species representation in Figure 6 is 1 

allowing more ice condensate species (e.g., snow and graupel).  A simplified representation of 2 

this is illustrated in the right side of Figure 6.  In this case, cloud ice is distinguished from snow 3 

and graupel by a consideration of particle size and/or the amount of overall ice mass, and graupel 4 

is distinguished from snow via the ice growth process during its formation (i.e. deposition or 5 

riming).  In these cases, there is typically a prescribed particle density for each species, or in 6 

more complex representations this can be predicted as well.   In addition, schemes of this 7 

complexity typically take particle fall velocities into more careful consideration, with even the 8 

cloud ice subject to sedimentation.   9 

A final notion to highlight is that cloud parameterization schemes can be diagnostic, prognostic 10 

or a combination of the two. In a diagnostic approach, cloud variables and the overall cloud state 11 

are determined as a function of other model variables (such as model resolved wind fields, 12 

temperature, water vapor and relative humidity etc.). For this type of approach, there is no cloud 13 

memory in successive model time steps and the relationships between the state of the cloud field 14 

and model state is fully determined. The simplest example of this kind, a grid-scale condensation 15 

scheme, produces clouds only when the GCM grid box mean relative humidity reaches a 16 

specified threshold [e.g., 100%, Geleyn, 1980].  In prognostic cloud schemes [e.g., Sundqvist, 17 

1978], the time evolution of cloud variables (e.g., cloud-ice mass and cloud cover) is predicted 18 

based on contributions from: grid-scale advection of the cloud variable (e.g., through horizontal 19 

and vertical wind fields), source terms (e.g., cumulus convective cloud condensates detrainment) 20 

and sink terms (e.g., auto-conversion between cloud condensates and precipitation).  21 
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b) Models 1 

For the GCMs utilized in this study, the following two subsections give brief descriptions of their 2 

parameterizations used to model ice clouds and related processes.  The first subsection contains 3 

descriptions for what are simply referred to as GCMs, which typically rely on ice-cloud 4 

parameterizations of a rather simple form (e.g, left side of Figure 6).  The second subsection 5 

contains descriptions of two GCMs where there is an attempt, through novel 6 

numerical/conceptual frameworks, to better resolve cumulus processes. In these two cases, the 7 

ice processes are based on the three-species approach discussed above (e.g, right side of Figure 8 

6).   9 

i) GCMs and Single Species: Cloud Ice 10 

The ECMWF Integrated Forecast System (IFS; version 30R1) cloud scheme uses prognostic 11 

equations for cloud cover and total cloud condensate content (i.e., ice and liquid together). 12 

Condensed water species are considered pure ice at temperatures colder than -23 °C and liquid at 13 

temperatures warmer than freezing. Between -23 °C and 0 °C, the total cloud condensate is 14 

divided into ice and liquid mass by linearly scaling the fraction of the total condensate by 15 

temperature. Two kinds of ice crystals are modeled, “pure ice” (particles < 100 µm) and “snow” 16 

(particles > 100 µm). Snow falls out instantly upon formation but is subject to sublimation and 17 

melting in lower levels. Note that ice particles falling into a cloudy layer are a source for ice in 18 

that layer, whereas ice falling into clear sky is converted into snow.  The scheme considers 19 

sources/sinks from convective and non-convective processes (e.g., turbulence near cloud edges 20 

and resolved-scale ascent/decent), with deep, shallow and mid-level convective processes 21 

represented.  The condensates produced in convective updrafts can be detrained from the upper 22 

cloud layers into the environment. The formation of clouds by non-convective processes, on the 23 
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other hand, is determined by the balance between the specific humidity and its saturation value, 1 

resolved vertical ascent of moist air, and/or the diabatic cooling rate (e.g., longwave radiation).  2 

The scheme considers cloud destruction through evaporation associated with large-scale and 3 

cumulus-induced descent, diabatic heating (e.g., solar radiation) and turbulent mixing between 4 

cloudy air and environmental air near the cloud edge.  Processes such as auto-conversion, 5 

collection and accretion are active in clouds, with evaporation of precipitation being the active 6 

process outside clouds. The falling/sedimentation rates of cloud condensate whether they are ice 7 

mass, mixed phase or pure water clouds depend on temperature and ice particle size. For this 8 

comparison, the IWC include the analyzed values from both the R30 and R31 versions of the IFS 9 

system, and include periods from 8/2005 to 7/2006. 10 

The GEOS5 ice cloud scheme is prognostic for cloud condensate and cloud fraction. Two types 11 

of clouds are distinguished by their condensate source. Anvil clouds originate from detraining 12 

convection and large-scale clouds originate using a probability density function (PDF) based on 13 

condensation calculations. This scheme directly links convection to anvil cloud variables by 14 

allowing detrained mass and condensate fluxes from the convective scheme to be added to the 15 

existing condensate and fraction for the anvil cloud type. For the large-scale clouds, cloud 16 

condensation is estimated using a simple PDF of total water [Smith, 1990; Rotstayn, 1999] and 17 

used to update cloud fraction and condensate.  The destruction processes include - evaporation of 18 

condensate and fraction, sedimentation of frozen condensate and accretion of condensate by 19 

falling precipitation. The evaporation of condensate and cloud fraction is meant to represent 20 

destruction of cloud along edges in contact with cloud-free air following Del Genio et al [1996]. 21 

Sedimentation speeds are calculated as in Lawrence and Crutzen [1998] except that their 22 

expression for mid-latitude clouds is applied to all ice clouds of the large-scale type, and their 23 
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expression for tropical clouds is applied to the anvil type. For this comparison, the IWCs are 1 

based on a simulation using specified sea surface temperatures (SSTs) for the period 1/1999-2 

12/2002. 3 

The NCAR Climate Atmosphere Model (CAM 3.0) cloud scheme uses prognostic equations for 4 

two predicted variables: liquid and ice phase condensate [Rasch and Kristjansson, 1988; Zhang 5 

and McFarlane, 1995]. During each time step, however, these are combined into a total 6 

condensate and partitioned according to temperature (described below), but elsewhere function 7 

as independent quantities. The scheme considers condensate sources/sinks both from grid-scale 8 

(e.g. horizontal advective and vertical motions) and sub-grid scale (e.g. convective and turbulent) 9 

processes. The parameterization has two components: a macro-scale component that describes 10 

the exchange of water substance between the condensate and the vapor phase and the associated 11 

temperature change arising from that phase change [Zhang et al., 2003], and a bulk 12 

microphysical component that controls the conversion from condensate to precipitate.  In its bulk 13 

microphysics step, the total condensate is decomposed into liquid and ice phases and considered 14 

all ice if T < -40 ºC and all liquid if T > -10 ºC. At -40 ºC < T < -10 ºC, the phase is determined 15 

with a linear relation in between. Within the parameterization, four types of condensate may 16 

exist and are expressed as mixing ratios of liquid and ice phases for suspended condensate with 17 

minimal fall speed, and liquid and ice phases for falling condensate (i.e. precipitation). Only the 18 

suspended condensates are carried forward in time, with precipitation falling out instantaneously. 19 

Precipitation is formed by explicitly considering individual physical quantities like droplet or ice 20 

number concentration, shape of size distribution of precipitate, etc.  The precipitate may be a 21 

mixture of rain and snow, and is treated in diagnostic form. In addition, the conversion from 22 

condensate to precipitate as well as the evaporation of condensate and precipitate are 23 
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parameterized.  There is a direct link to the convective scheme even though the scheme itself 1 

does not include the ice phase (i.e., all detrained condensate is in liquid form). Convective 2 

detrainment can still contribute to the IWC of the large-scale clouds in the model at cold 3 

temperatures, with a portion of the detrained liquid partitioned into ice according to the 4 

temperature considerations given above. After convection processes and sedimentation have 5 

occurred, the liquid and ice mixing ratios are recalculated from the total cloud condensate.  For 6 

the comparisons presented later in the paper, the IWC values have been generated by the CAM3 7 

using specified sea surface temperatures (SSTs) for the period from 1979 to 1999. 8 

ii) CRM-like GCMs with Multiple Frozen Species: Clouds, Snow and Graupel 9 

This section describes two models that utilize the multi-species ice framework.  These two 10 

models are of a different class of GCM, in that they try to more explicitly account for the 11 

representation of sub-grid scale processes.  For this reason, they are referred to collectively in 12 

this study as Cloud-Resolving Model (CRM)-like GCMs.  While this aspect deserves mention, 13 

the most relevant point of the discussion is that their ice microphysical schemes include 14 

representations of cloud ice, snow and graupel, which allow for an additional consideration in 15 

terms of the model-data comparisons.  However, it is important to recognize that the CRM-like 16 

nature of these models is not a requisite to incorporating this three-species framework into a 17 

GCM. 18 

In what is now commonly referred to as the multi-scale modeling framework (MMF; also known 19 

as “Super parameterization”), the conventional cloud parameterizations are replaced with a CRM 20 

in each host GCM grid column [Grabowski, 2001; Khairoutdinov and Randall, 2001; Randall et 21 

al., 2003]. The MMF is designed such that the GCM provides large-scale forcing to a CRM 22 

within each GCM grid column.  The CRM then provides subgrid fluxes, cumulus convection and 23 
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clouds etc. to the parent GCM. This allows for explicit simulation of cloud processes and their 1 

interactions with radiation and surface processes within the GCM, and a two-way interaction 2 

between the cumulus and large-scale. The NASA fvMMF was developed using a finite volume 3 

GCM (fvGCM) with 2ox2.5o resolution and a version of the two-dimensional (2D) Goddard 4 

Cumulus Ensemble (GCE) model [Tao et al., 2003] embedded in each GCM grid box. The 5 

fvMMF employs a single-moment bulk microphysical scheme with two liquid (cloud and rain) 6 

and three frozen (cloud, snow and graupel) hydrometeor classes. This six-class (water vapor plus 7 

five hydrometers) bulk scheme includes comprehensive microphysical processes among the 8 

water vapor and hydrometeors.  The density for solid hydrometeors are assumed to be 0.917, 0.1, 9 

0.4 g cm-3 for cloud ice, snow and graupel, respectively (e.g., Figure 6). The sedimentation 10 

processes of precipitating condensates as well as cloud ice crystals are also considered.  For this 11 

comparison, the IWC values are based on simulations with prescribed SSTs for the months 12 

07/1998 and 01/1999. 13 

Kuang et al. [2005] proposed a different kind of approach for improving the cumulus scale called 14 

Diabatic Acceleration and REscaling or Reduced Acceleration in the VErtical (DARE/RAVE) . 15 

DARE/RAVE is a computationally efficient method for simulating the interactions of large-scale 16 

atmospheric circulations with deep convection in a 3D cloud-resolving model by reducing the 17 

scale difference between the large-scale and convective circulations.  Data used in this 18 

comparison are from a near-global (70o N,S) prescribed SST simulation for the period 1998 19 

using the Weather Research and Forecasting (WRF) model with the RAVE approach 20 

implemented (Kuang and Walker, manuscript in preparation). The horizontal grid spacing is 21 

~80km, and the RAVE factor is 20. The microphysics scheme is a single-moment, 6-class 22 

microphysics scheme that includes the interaction between water vapor, cloud water, cloud ice, 23 
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rain, snow, and graupel [Hong and Lim, 2006]. In this case, the density for snow and graupel are 1 

assumed to be 0.1 and 0.5 g cm-3, respectively, but not a quantity defined/used for cloud ice in 2 

this implementation. 3 

4. Model-Data Comparisons 4 

Before model-data comparisons can be made, a number of considerations have to be made in 5 

terms of sampling the model output in a manner that leads to the most meaningful comparison to 6 

the observations.  In this section, we highlight some of the more notable issues, including 7 

sampling the model output to account for comparable populations and the influence of the 8 

diurnal cycle, and considerations of instrument/algorithm sensitivity associated with observed 9 

IWC thresholds and ranges.  We then focus our discussion on the degree that all frozen 10 

hydrometeors are represented in the retrieved values as well as model representations.  Aspects 11 

of the first two issues as they pertain to model-data comparisons between MLS and ECMWF 12 

analysis have been discussed in Li et al. [2007] and will only be touched on briefly here.   13 

To illustrate the importance of proper sampling, Figure 7 shows the mean and the day minus 14 

night (i.e. 1:30pm – 1:30am local equatorial crossing time) difference in MLS IWC at 215 hPa.  15 

Evident is the impact of the strong diurnal cycle of deep convection over the tropical continents, 16 

accounting for fluctuations in IWC on the order of +/- 50% of the mean.  Over the tropical 17 

oceans, convection typically peaks in the early morning, accounting for the opposite sign relative 18 

to the land. Figure 7 also shows a similar result based on CloudSat IWC values, with similar 19 

implications [cf., Liu et al., 2008].   From this standpoint, it is obvious that a well-posed model-20 

data comparison should take into account the diurnal sampling consistent with the satellite 21 

sensors – and thus it is necessary to sample the model output in accordance with the satellite 22 
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orbit.  It should be noted here that of all the products mentioned in Section 2, a number of the 1 

cloud products based on ISCCP (albeit not IWC due to its reliance on visible channels) have the 2 

virtue of 3-hour sampling giving a much more robust depiction of the diurnal cycle.  Future work 3 

might examine the virtues of combining the strengths of better time-resolved ISCCP cloud 4 

products with the more penetrating retrievals of IWC from CloudSat and MLS to construct a 5 

more comprehensive characterization of the diurnal cycle of IWC. Li et al. [2007] illustrated the 6 

impact of sampling the 4xdaily ECMWF analysis according to the MLS orbital sampling pattern.  7 

In that case, the satellite-sampled mean IWC at 215 hPa differed from the mean of the 4xdaily 8 

values in some tropical regions by up to 25%.  Note that such a result will be strongly dependent 9 

on the model depictions of the diurnal cycle which have been shown to have significant 10 

shortcomings [Yang and Slingo, 2001; Dai and Trenberth, 2004].  11 

A second, and significantly more complex issue that needs to be considered is the sensor and 12 

algorithm sensitivities in conjunction with the model representations. The upper panel of Figure 13 

8 shows histograms for MLS IWC values at 147 hPa (green solid). Evident is the lower limit of 14 

MLS sensitivity at about 1.5 mg/m3 and its upper limit of about 50 mg/m3 that was mentioned in 15 

Section 2.  Note that histograms for MLS data for a complete year (green solid) along with a 16 

single month (green dashed) of data are shown to illustrate that a month of (A-Train) sampling 17 

provides a representative sample when a large enough region is considered (in this case global, 18 

with the non-zero values effectively just coming from the tropics).  Also shown is an analogous 19 

PDF from CloudSat (black solid) that shows the larger lower, and considerably larger upper, 20 

sensitivity limits relative to MLS.  Note that both the MLS and CloudSat histograms are based 21 

on the inherent sensor footprint resolutions, with CloudSat’s being a considerably smaller 22 

volume (see Section 2).  23 
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Values of IWC from two different recent versions of the ECMWF analysis are also shown 1 

(purple solid and dashed); the differences between the two versions will be discussed in more 2 

detail at the end of this section.  The model(s) can have very small to near-zero values of IWC 3 

and in order to make a fair model-data comparison it may be necessary to set values that are less 4 

than the lower sensitivity limit to zero.  Consideration may also be made in a similar way for the 5 

upper bound, meaning one might take model values larger than the upper sensitivity limit of the 6 

observations and reduce them to this (saturation) value. An example of accounting for such 7 

sensitivities in a model-data comparison is described in Li et al. [2007].  In that case, the 8 

ECMWF instantaneous (i.e. 4xdaily analyses) IWC values less than the MLS lower limit of 9 

sensitivity (e.g., 1.5 mg/m3 at 215hPa) were set to zero before computing the time-mean values 10 

for comparison to MLS. The impact of the sensitivity sampling was less than 10%, but again, the 11 

impact in any given model-data combination will depend on both the model representation of the 12 

field (e.g., PDF) and the sensitivity limits of the given observation.   13 

If consideration were made to perform the above procedure on the ECMWF data based on the 14 

histogram of the raw CloudSat retrievals, the differences would be greater than for the case of 15 

the MLS-applied sensitivity limits.  This is because CloudSat’s lower sensitivity limit is larger 16 

and thus a greater number of higher IWC values within the ECMWF would be set to zero leading 17 

to a greater impact on the mean ECMWF values.  However, it is important to point out that for 18 

the MLS and ECMWF case described above, the model and satellite values have approximately 19 

the same spatial resolution (~100km) and thus they average over the similar sub-grid scale 20 

variability.  On the other hand, CloudSat spatial resolution is considerably smaller – in fact one 21 

could say it is sampling the sub-grid scale of the MLS and ECMWF.  To make a fair comparison, 22 

the CloudSat values need to be averaged to a comparable spatial resolution (black dashed).  23 
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Because this process averages “clear” (relative to CloudSat’s lower sensitivity limit) and cloudy 1 

values, the lower sensitivity limit is no longer apparent.  In fact in the low IWC regime, the 2 

ECMWF and 1ox1o CloudSat values show better agreement1.  While a direct comparison may be 3 

more appropriate between these two curves (black dashed and purple lines), the two populations 4 

are still biased because nothing has yet been done to account for the lower sensitivity limit of 5 

CloudSat in this case.    6 

Although this alone won’t account for the intrinsic sampling mismatch just discussed, the most 7 

ideal manner of comparison is to construct from the model fields the radar reflectivity that would 8 

be observed by CloudSat and then perform the IWC retrieval on the constructed reflectivity (cf. 9 

ISCCP simulator; [Klein and Jakob, 1999; Webb et al., 2001]). This approach has been used to 10 

assess CloudSat IWC retrievals from CRM output with multiple ice species [Woods et al., 11 

2008a] using a 94 GHz radar simulation package called QuickBeam [Haynes et al., 2008].  To 12 

account for the possible spatial sampling mismatch, it would be best to average the observed 13 

reflectivity values over a grid-box comparable to the model resolution, then perform the cloud 14 

retrieval on them.  Then from the PDF of this population, apply any lower and upper sensitivity 15 

limits of the sensor/algorithm to the model-derived values computed from the above approach.   16 

While the above approach has its strengths, it is not conducive for assessing most climate and 17 

numerical weather prediction GCMs that only consider cloud ice and not other/larger frozen 18 

hydrometeors (e.g., snow and graupel). In such cases, the resultant reflectivity, and thus IWC 19 

retrieval, will be intrinsically unrealistic, or else can only be compared to observed cases where 20 

the larger hydrometeors are not expected or observed in the column.  In a few cases, such as the 21 

                                                
1 Averaging CloudSat to 2ox2o makes only minor changes to the histogram relative to 1ox1o 
averaging. 
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NASA fvMMF and RAVE GCMs and regional cloud resolving models (CRMs), the additional 1 

constituents are modeled.  This raises questions about what components of the frozen 2 

hydrometeors are represented by the observations, and then in turn, how they can be judiciously 3 

used to compare to the models.  For example, in Section 2, it is mentioned that CloudSat is 4 

expected to be sensitive to these larger hydrometeors and thus represent more than just “floating” 5 

cloud ice water content.  Meanwhile, the characteristics of MLS sampling (see Section 2) make it 6 

appear to be more representative of just the cloud ice. It is imperative to consider these issues to 7 

utilize the data for model comparison and validation. 8 

Figure 9 shows zonal and annual mean values of IWC from three GCMs that only carry/simulate 9 

cloud ice, NCAR-CAM3, GEOS5, and ECMWF, in addition to the two CRM-like GCMs, RAVE 10 

and fvMMF.  There are two main areas of disagreement amongst these models.  First, there is 11 

discrepancy in the overall magnitude of about a factor of two to three.  Second, their spatial 12 

distribution with respect to height is considerably different.  Apart from their spatial distribution, 13 

it should be pointed out from Figure 8 that the PDF of the three cloud ice fields from GEOS5, 14 

ECMWF, and fvMMF have considerably different structures, particularly on the high end – 15 

although this part of the distribution is particularly sensitive to the grid resolution which are not 16 

identical in these models.  These characteristics beg the question, do CloudSat and/or MLS data 17 

provide the means to discriminate which of these distributions is more realistic?  Comparing to 18 

Figure 5, it is evident that the CloudSat zonal mean values are quite different, e.g., much larger 19 

in magnitude, than any of these model distributions.  However, as mentioned above, CloudSat is 20 

expected to be sensitive to larger frozen hydrometeors that are not part of the representation in 21 

many model distributions, for example those shown in Figure 9.  On the other hand, the 22 

magnitudes of the IWC in the MLS zonal average profile shown in Figure 5, which are thought 23 
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to be more representative of cloud ice for the reasons mentioned in Section 2, are much closer to 1 

the modeled values.   2 

To shed additional light on these model-data comparisons, Figure 10 and Figure 11 show multi-3 

component IWP distributions of the frozen hydrometeors simulated by two CRM-like GCMs, 4 

RAVE and fvMMF, respectively.  For each model, the annual mean values of graupel, cloud ice, 5 

snow and total IWP are shown as horizontal maps.  Also shown are the zonal mean values and 6 

the percent contribution of each constituent to the total.  As there are yet no global observations 7 

that claim to readily distinguish these various components, the model distributions are being used 8 

here as somewhat of a guide, since their model microphysics were developed in consideration of 9 

field experiments/data, albeit temporally and spatially sparse.  In general agreement between 10 

these two models are the following features:  the total, graupel and snow IWP distributions have 11 

overall magnitudes that agree relatively well between the two models.  There is a considerable 12 

difference in the magnitudes of the cloud IWP as was also evident in Figure 9.  Beyond this there 13 

are considerable differences in the regional scale features of the distributions.  Most important 14 

for this discussion, are the relative contributions of the various frozen hydrometeor components 15 

to the total IWP.  In the RAVE GCM, each component represents about 30% of the total frozen 16 

mass in the tropics, while in the fvMMF, the graupel, snow and cloud are about 50%, 30% and 17 

10%, respectively. Thus in the case of these two models, the overall message is that each of the 18 

three frozen components contributes a sizeable fraction to the overall total.  If this is the case in 19 

nature, this must be considered in regards to applying the satellite observations, interpreting the 20 

model-data comparisons and in particular designing new observing systems.  An interesting 21 

feature is that the magnitude and spatial distribution of the total IWP somewhat resembles the 22 

CloudSat IWP (and to some degree the MODIS and CERES) values that are shown in Figure 4, 23 
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with the reminder that CloudSat is sensitive and may be accounting for most of the larger frozen 1 

hydrometeors and larger IWC values. 2 

Figure 12 shows the zonal and annual mean vertical profiles of IWC from the two CRM- GCMs.   3 

Except for the distributions of cloud ice, the distributions for the other frozen components from 4 

the two models agree relatively well, particularly given the complete lack of global observations 5 

that would adequately guide and constrain GCM development in this area.    Notable is the 6 

relatively good agreement in the total IWC values in this figure, namely in terms of general 7 

morphology and magnitude, with those of CloudSat shown in Figure 5.  Moreover, Figure 8 8 

shows that there tends to be slightly better agreement between the CloudSat (1ox1o) PDF (black 9 

dashed) and the fvMMF total IWC (solid thick blue) than with that of any other constituent.  10 

However, one item worth pointing out is the differences in vertical distribution, particularly with 11 

respect to the tropics.  For CloudSat, the greatest concentration of IWC is between 250 and 400 12 

hPa, while for the models the peak values are found around 500-600 hPa.  Presuming such 13 

distributions relate in some way to the latent and radiative heating profiles, this disagreement is 14 

somewhat troubling and might indicate shortcomings in the underlying microphysical schemes in 15 

these models as they relate to convection and the large-scale circulation. Consideration should 16 

also be given to the possibility that the height of the peak CloudSat values might also be 17 

artificially influenced by the algorithm’s method of (linearly) combining the liquid and ice water 18 

retrieval solutions via temperature.   19 

The results described above indicate that CloudSat IWC values may be a useful estimate of total 20 

IWP, at least for the purposes of representing a very preliminary and somewhat qualitative form 21 

of validation for models that carry a more comprehensive system of frozen hydrometeors.  22 

However, this still doesn’t provide a constraint on the cloud ice component that is typically the 23 
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only component represented in many GCMs (i.e., Figure 6), and to the extent MLS might 1 

provide such a constraint, the latter is very limited in vertical extent.  To help address this 2 

problem, it is possible to make judicious subsets of the CloudSat data based on additional flags 3 

and information in the retrieval products [Stephens et al., 2008].  For example, Figure 13 shows 4 

CloudSat IWC values filtered in three different ways, taking only cases that are flagged as 5 

having no precipitation (NP) at the ground, classified as non-convective (NC) clouds, and the 6 

combination of both of these criteria (NP & NC).  For example, the NP case includes all IWC = 7 

0 (i.e. clear) and the only the IWC > 0 cases that are non-precipitating at the surface.  The line 8 

plot on the lower left shows the frequency of occurrence of these three conditions.  In the 9 

example just given, the frequency is calculated as the number of IWC > 0 cases that are non-10 

precipitating divided by the total cases.   11 

For interpretation of Figure 13, it is useful to start with the most stringently filtered case, i.e. NP 12 

& NC.  In this case, the IWC is considerably lower than the total shown in Figure 5.  In some 13 

regions, the reduction in IWC is well over 50% through the exclusion of the cases that exhibit 14 

precipitation at the surface and those denoted as convective.   Both of these excluded cases 15 

would be expected to contain significant amounts of large frozen hydrometeors (e.g., snow, 16 

graupel).  For the NC case, there is a significant increase in IWC in the mid-latitudes over the NP 17 

& NC case.  Because the mid-latitude synoptic regime more readily allows for precipitation 18 

without convection, the IWC retained is considerably greater – in fact very near the original total 19 

in Figure 5.  However, including the precipitating cases does not have a significant impact in the 20 

Tropics because most precipitation is associated with convection.   This is why all three cases 21 

tend to be the same for the tropics, i.e. they retain only about 30% of total cloud ice observed by 22 

CloudSat (Figure 5).  Interestingly, this fraction of retained ice – inferred here to be the 23 
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“floating” cloud ice – is within a factor of 2 or so of the same fraction of cloud to total ice as in 1 

the two CRM-like GCMs.   2 

The main point of the discussion above is that with the additional constraints applied to CloudSat 3 

IWC, e.g., NP & NC, the values are more likely to reflect only ice content within clouds with 4 

significantly less contribution from graupel and snow [cf., Stephens et al., 2008].  Additionally, 5 

these constrained values have a strong resemblance to the tropical values estimated by MLS.  6 

This can be seen by comparing the MLS IWC values shown in the inset panel of Figure 5 to the 7 

right of Figure 13 – which is the same as the left but plotted in a manner that can be more readily 8 

compared to the MLS values.  The agreement between these two observational resources, along 9 

with an understanding of their sampling characteristics/constraints, indicates that these might 10 

serve as a preliminary guide for evaluating GCM-simulated (floating) cloud ice fields. One such 11 

comparison is derived by comparing the IWP estimate from CloudSat - with the NP & NC 12 

constraints applied - shown in Figure 14 to the GCM-simulated values of (cloud-only) IWP in 13 

Figure 3.  This tentative comparison indicates that most of the models that contributed to the 14 

IPCC 4th assessment might underestimate cloud IWP. 15 

A second comparison is given in Figure 15, which shows the IWC field at 215 hPa from MLS 16 

and from CloudSat with the NP & NC constraints applied, along with the GEOS5 and NCAR 17 

CAM3 GCMs, and the ECMWF R30 analysis. Within the context of this comparison, the two 18 

GCMs perform relatively well – considering the wide disparity displayed in the first MLS-GCM 19 

comparisons [Li et al., 2005].  It is worth noting that while the ECMWF analysis R30 values are 20 

considerably less than the two satellite-derived values, efforts were undertaken to increase the 21 

cloud ice as well as upper-tropospheric water vapor through improved microphysics based on the 22 

arrival of MLS data and associated comparisons [Li et al., 2007].  The improvement, relative to 23 
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the MLS estimates, is illustrated in Figure 16 and Figure 8.  The changes in the cloud ice 1 

microphysics for this model (~ left side of Figure 6) involved allowing ice-phase supersaturation 2 

and a revision in the ice crystal sedimentation and snow auto-conversion rate [Tompkins et al., 3 

2007].  While the former condition would typically reduce the amount of IWC, the slowing of 4 

the rates in the latter revision accounted for the overall increase in IWC, and the better agreement 5 

with the satellite derived values. 6 

6. Summary and Discussion  7 

The accurate simulation of tropospheric ice clouds in GCMs continues to represent a significant 8 

challenge to the model development community.  Shortcomings in the representation of these 9 

clouds impacts both the latent and radiative heating processes, and in turn the circulation and the 10 

energy and water cycles, leading to errors in weather and climate forecasts and to uncertainties in 11 

quantifying cloud feedbacks associated with global change (e.g., Figure 1 and Figure 3).  Much 12 

of the challenge has been associated with a lack of high-quality, global observations of ice clouds 13 

and related quantities. While observations from passive nadir-viewing sensors have been 14 

available for some time (see Section 2), their cloud ice retrievals provide little vertical structure 15 

information (albeit 3 levels from ISCCP), have thus been generally limited to estimates of IWP, 16 

are severely hampered in multi-level cloud systems, and have undergone little systematic 17 

comparison and validation (e.g., Figure 2 and Figure 4).  Despite these shortcomings, model 18 

development has progressed over the last decade in terms of more models including prognostic 19 

cloud schemes and introducing more sophisticated microphysics representations (e.g., Section 3 20 

and Figure 6).  With the arrival of the EOS-era of satellite observations, considerable new 21 

resources have become available to help address this problem.  These include the moderate 22 

spectral and high spatial resolution of MODIS (see Section 2) and the stereoscopic capabilities of 23 



 35 

MISR [Diner et al., 1989].  Most relevant however to the challenges associated with cloud ice 1 

have been the products introduced by MLS and CloudSat, and soon CALIPSO (see Section 2).  2 

These latter products include vertically-resolved estimates of IWC (e.g., Figure 5) and have 3 

allowed for the first time global-scale comparisons of observed ice mass at a given level with 4 

GCM representations [Li et al., 2005].   5 

The arrival of these new cloud ice products heralds a new era for model diagnosis, development 6 

and validation with respect to cloud mass, structure and microphysical characterization.  7 

However, exploiting the observations comes with considerable challenges, since both the 8 

observing systems and the present model parameterizations and frameworks related to cloud ice 9 

have largely developed independently of each other.  Thus, it is not a simple matter of comparing 10 

the model output with the retrieved quantities, as might be the case for more straightforward 11 

quantities like sea surface temperature, top of the atmosphere radiation, or total column water 12 

vapor.  The algorithm teams are still in the process of characterizing and validating their 13 

observed estimates [Wu et al., 2007; Stephens et al., 2008] and GCMs exhibit considerable 14 

variation in their representations of ice clouds [e.g.,  Section 3, Jakob, 2002], meaning even 15 

comparisons amongst the observations themselves [e.g., Fig. 4, Wu et al., 2008] or the models 16 

themselves is fraught with challenges.  The background, results and discussion in this paper are 17 

meant to bring the model and satellite communities closer in order to make more rapid progress 18 

on this problem.  Very fundamental yet basic information on the satellite side of the problem as 19 

well as the modeling side is presented so that greater common ground can be found for 20 

coordinating research and development in this area. 21 

The most fundamental question addressed in this paper is can the MLS and/or CloudSat IWC be 22 

used to evaluate IWC values from GCMs?  With this, comes discussion of what are the 23 
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considerations that must be made to make meaningful comparisons between the models and the 1 

observations.  Inherent to this challenge is that the sensitivity and sampling characteristics of the 2 

instruments (e.g., Figure 7 and Figure 8) make their products only applicable to certain 3 

components and/or ranges of IWC.  For example, MLS tends to represent IWC in the low to 4 

medium range of values  (e.g., 2 to 50 mg m-3), and because it samples only the upper most 5 

levels of the troposphere where precipitation and mixed-phase have less influence, might be most 6 

representative of the cloud ice field (see Section 2). On the other hand, CloudSat is much less 7 

sensitive to small IWC values and is sensitive to larger hydrometeors and IWC values.   8 

Using our present understanding of the strengths and limitations of the IWC values from MLS 9 

and CloudSat, along with knowledge and findings regarding the model ice fields, the analysis 10 

works to constrain how the data can best be applied for model evaluation.  A chief consideration 11 

is the degree the floating (i.e. cloud) and precipitating (e.g., snow, graupel) hydrometeor fields 12 

are represented.  For example, typically GCMs represent and/or output the ice associated with 13 

clouds, with a few GCMs that explicitly represent precipitating hydrometeors as well (i.e. 14 

Figures 9-12).  Based on the information at hand at this time and a number of qualitative 15 

inferences, the findings in this study lead to the suggestion that CloudSat IWC might provide a 16 

rough estimate of the total IWC field (i.e. including cloud, snow, graupel) that can be compared 17 

to GCMs that carry/simulate a more complete budget of the total ice field (Figures 4,5,10-12).  In 18 

addition, MLS IWC, along with judiciously sampled CloudSat IWC, might provide a preliminary 19 

estimate of IWC associated with ice clouds in a GCM (Figures 13-16).  Again, it has to be 20 

stressed that these products are still undergoing characterization and our community is just 21 

beginning to learn how to apply these retrievals to model-data comparisons.  In any case, the 22 

limited capabilities of previous estimates (e.g., only IWP), coupled with their relatively poor 23 
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agreement (e.g., Figure 4), along with the critical need to provide some form of validation for 1 

what has largely been an unconstrained yet important quantity, dictates that even preliminary 2 

model-data comparisons along the lines discussed here be performed with these new resources.  3 

There are a number of avenues that could and/or need to be explored in order to refine the types 4 

of preliminary comparisons presented in this study.  On the observational side, additional 5 

validation studies, particularly those that may offer cross comparison and validation of MLS, 6 

CloudSat and CALIPSO, to help enhance confidence and characterization of the retrievals.  The 7 

fact that these sensors fly in formation makes this a relatively productive and efficient 8 

undertaking.  In addition, if more specific information could be relayed regarding a given 9 

product’s applicability and/or sensitivity to quantities explicitly represented in models (e.g., 10 

cloud ice alone, snow, graupel), the easier it will be to extend and interpret these types of studies.  11 

Further, developing auxiliary products, such as the CloudSat cloud classification flags, and or 12 

learning to use other complementary A-Train sensors, may help immensely to characterize the 13 

context of the measurement and further refine the data-model comparison. For example, 14 

CloudSat provides particle size distribution (PSD) parameters as part of their retrievals.  We 15 

have explored the use of these to reconstruct the size distribution and separate ice mass 16 

contributions from small and large particles to facilitate model-data comparisons [Woods et al., 17 

2008b].  Another very complimentary data set / methodology to explore in the present context is 18 

the hydrometer profile estimates from TRMM which are thought to represent precipitating ice 19 

particles [Jiang and Zipser, 2006].  As we continue to learn about the strengths of the current 20 

data and where hard limitations exist, follow-on mission design should be particularly cognizant 21 

of the model quantities and specific validation needs.  Having additional microphysical 22 
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information (e.g., particle size) or dynamic information (e.g., vertical velocity) would be 1 

exceptionally helpful for further guiding and validating model development.    2 

As with the observation side, a clear(er) articulation by the modelers of the mass and particle size 3 

ranges being represented in the cloud parameterizations is needed to make the model-data 4 

comparisons most meaningful.  Similarly, for the models that tend to only represent and output 5 

their cloud ice values, it would be useful to output the ice mass that is presumed to have 6 

precipitated out on a level-by-level basis.  This is a quantity that is not typically output but yet 7 

may provide through the use of CloudSat IWC an additional constraint on the model’s ice 8 

physics.  Beyond just getting the mean fields of ice mass correct, it will also be important to 9 

explore and validate in greater detail the distributions of ice mass values (e.g., Figure 8), paying 10 

close attention to equitable sampling methodologies.  Finally, for those models that carry a more 11 

comprehensive range of frozen hydrometer mass (e.g., cloud, snow, graupel), it would be helpful 12 

if the modelers considered the incorporation or use of QuickBeam [Haynes et al., 2008] and the 13 

CloudSat retrieval algorithm(s) to allow for a close correspondence between model and observed 14 

quantities.  Overall the challenge is quite clear regarding our model simulations of cloud ice 15 

(e.g., Figure 1 and Figure 3) but given the new A-Train resources in hand, in conjunction with 16 

those from a number of others that bring complementary information (e.g., see those in Figure 17 

4), we should expect to see a significant reduction in the shortcomings associated with our cloud 18 

ice simulations and in the uncertainties associated with (high) cloud climate change feedback by 19 

the time of the next IPCC assessment report.  An encouraging sign is that ECMWF has already 20 

introduced changes that bring their IFS system into better alignment with the available 21 

observations, and the latter have also played a role in the recent development of the GEOS5 22 
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GCM which also exhibits quantitatively good model-data agreement (e.g., Figure 15 and Figure 1 

16).   2 
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FIGURE CAPTIONS 1 

 2 

Figure 1. Globally-averaged, annual mean values of precipitation, precipitable water, total cloud 3 

fraction and cloud ice water path from the 1970-1994 period of the 20th century GCM 4 

simulations contributed to the IPCC 4th Assessment Report (20c3m scenario). Zero values 5 

indicate that the given model did not provide this variable to the IPCC database. 6 

Figure 2. Schematic diagram illustrating measurement methods for estimating cloud ice water 7 

content/path, including in-situ measurements as well as passive, radar and limb-sounding 8 

satellite techniques.  9 

Figure 3. Annual mean values of cloud ice water path (IWP; gm m-2) from the 1970-1994 period 10 

of the 20th century GCM simulations contributed to the IPCC 4th Assessment Report (20c3m 11 

scenario); Note that the color scale is not linear. 12 

Figure 4. Annual mean values of cloud ice water path (IWP; gm m-2) from ISCCP (upper left; 13 

2005), NOAA/NESDIS (middle left; 2000-2006), CERES/MODIS (lower left; 2001-2005), 14 

MODIS MYD06 (upper right; 7/2002-6/2007), and CloudSat (middle right; 8/2006-7/2007).  See 15 

text for details. Note that the color scale differs from that in Figure 3. 16 

Figure 5. Annual mean values of cloud ice water content (IWC) at 215 hPa (left) and zonal 17 

average (right) from MLS (upper; 8/2004-7/2007) and CloudSat (lower; 8/2006-7/2007).  For 18 

upper right panel, MLS retrievals only extend down to 316 hPa (dotted line); inset shows same 19 

MLS data as larger panel but with different color scale. Note that MLS data below 215 hPa for 20 

this version (1.5) is not part of the official release and was processed offline as an experimental 21 

product. 22 
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Figure 6. Schematic diagram illustrating basic features of model parameterizations of cloud-1 

related ice for a conventional GCM using a single species microphysics scheme (left) and a 3-2 

species microphysics scheme (right).  The vertical axes are associated with ice growth processes 3 

and the horizontal axes are associated with ice mass and/or particle diameter and also particle fall 4 

velocity.  On the left figure, ice growth processes are not distinguished and are all embedded 5 

within the simplified parameterization.  On the right figure, deposition is the primary process 6 

associated with cloud and snow, while riming is the primary processes responsible for graupel 7 

formation.  On the left figure, cloud ice is assumed to be floating, i.e. zero fall velocity, and the 8 

ice deemed to be precipitating is removed immediately, i.e. infinite fall velocity.  Shading is an 9 

indication of the density of particles. 10 

Figure 7. (upper) Mean annual MLS IWC (mg m-3) at 215 hPa for 2007 (upper left) and the day 11 

minus night difference of the IWC values (upper right), where the daytime (nighttime) values 12 

come from the ascending (descending) portion of the orbits having local equatorial crossing 13 

times of 1:30 pm (am).  (lower) Same as upper, except for CloudSat IWC values and for altitude 14 

of 11km (~ 215 hPa). 15 

Figure 8. (upper left) Histograms of IWC values from CloudSat, two periods for MLS and two 16 

versions of the ECMWF analysis system (R30 and R31) for the periods 08/2006, 08/2005-17 

07/2006, 08/2006, 08/2005-07/2006 and 07/2006, respectively.  The MLS and solid-line 18 

CloudSat values are based on raw footprints.  The dashed-line CloudSat values is based on data 19 

first aggregated to 1ox1o grid boxes. (upper right) CloudSat and ECMWF values shown are same 20 

as left panel, additions are for GEOS5 (1/2006), and NASA fvMMFs for the periods 07/1998, 21 

where the latter includes values of graupel, snow, cloud and total ice.   22 
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Figure 9. Annual and zonal mean values of cloud ice water content (IWC; mg m-3) from NCAR 1 

CAM3 (upper left; 1979-1999), NASA GEOS5 (middle left; 01/1999-12/2002), ECMWF R30 2 

analysis (lower left; 08/2005-07/2006), fvMMF (upper right, 07/98 & 01/99), and RAVE GCM 3 

(middle right; 1998). 4 

Figure 10. Annual mean values of graupel (upper left), cloud ice (middle left), snow (lower left) 5 

and their sum (upper right) from the RAVE GCM, along with their zonal mean values (lower 6 

right) and percent contribution of each of the constituents to the total ice (middle right) [black = 7 

total, red = snow, graupel = blue, cloud = green]. 8 

Figure 11. Annual mean values of graupel (upper left), cloud ice (middle left), snow (lower left) 9 

and their sum (upper right) from the NASA fvMMF GCM, along with their zonal mean values 10 

(lower right) and percent contribution of each of the constituents to the total ice (middle right) 11 

[black = total, red = snow, graupel = blue, cloud = green]. 12 

Figure 12. Annual and zonal mean values of graupel (upper), cloud ice (upper middle), snow 13 

(lower middle) and their sum (lower) from the RAVE (left) and NASA fvMMF (right) GCMs. 14 

Dotted line in lower panel at 300 hPa is for comparison purposes to Figure 5. 15 

Figure 13. Annual and zonal mean values of CloudSat IWC (mg m-3) when considering clear 16 

cases and those with IWC > 0 but flagged as having no precipitation at the surface (NP; upper), 17 

cases flagged as non-convective clouds (NC; middle), and those cases that meet both these 18 

criteria (NP & NC; lower).  Right panels are the same, except for different plotting format for 19 

comparison to MLS inset panel in upper right of Figure 5.  Lower left panel gives the frequency 20 

of occurrence of the given IWC > 0 condition, NC (red), NP (blue), and NP & NC (green) 21 

relative to all (clear and IWC > 0) cases. 22 
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Figure 14. (upper) Mean annual IWP (gm m-2)  for CloudSat values flagged as both Non-1 

Precipitating (NP) and Non-Convective (NC) (8/2006-7/2007).  (lower) Same, except with color 2 

scale matching Figure 3. 3 

Figure 15. Mean annual IWC (mg m-3) at 215 hPa for MLS (upper left; 8/2004-7/2006), 4 

CloudSat values flagged as both Non-Precipitating (NP) and Non-Convective (NC) (upper right; 5 

8/2006-7/2007), GEOS5 (middle left; 1/1999-12/2002), ECMWF analysis R30 (middle right; 6 

8/2005-7/2006), and NCAR CAM3 (lower left; 1979-1999).  7 

Figure 16. Mean May-July 2006  IWC (mg m-3) at 215 hPa for ECMWF analysis R30 (upper 8 

left), R31 (upper right), the relative percent change ((R31 - R30)/R31*100), and the overlapping 9 

MLS values (lower right).  10 
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Figure 1. Globally-averaged, annual mean values of precipitation
(upper left), precipitable water (upper right), total cloud fraction
(lower left) and cloud ice water path (lower right) from the 1970-
1994 period of the 20th century GCM simulations contributed to the
IPCC 4th Assessment Report (20c3m scenario). Zero values indicate
that the given model did not provide this variable to the IPCC
database.



Figure 2.  Schematic diagram illustrating measurement methods for
estimating cloud ice water content/path, including in-situ measurements
as well as passive, radar and limb-sounding satellite techniques.



Figure 3. Annual mean values of cloud ice water path (IWP; gm m-2)
from the 1970-1994 period of the 20th century GCM simulations
contributed to the IPCC 4th Assessment Report (20c3m scenario); Note
that the color scale is not linear.



Figure 4. Annual mean values of cloud ice water path (IWP; gm m-2)
from ISCCP (upper left; 2005), NOAA/NESDIS (middle left; 2000-
2006), CERES/MODIS (lower left; 2001-2005), MODIS MYD06
(upper right; 7/2002-6/2007), and CloudSat (middle right; 8/2006-
7/2007).  See text for details. Note that the color scale differs from
that in Figure 3.



Figure 5. Annual mean values of cloud ice water content (IWC; mg
m-3) at 215 hPa (left) and zonal average (right).  Values from MLS
(upper) are from 8/2004-7/2006, and those from CloudSat (lower) are
from 8/2006-7/2007.  For upper right panel, MLS retrievals only
extend down to 316 hPa (dotted line); inset shows same MLS data as
larger panel but with different color scale.  Note that MLS data below
215 hPa for this version (1.5) is not part of the official release and was
processed offline as an experimental product.



Figure 6.  Schematic diagram illustrating basic features of model
parameterizations of cloud-related ice for a conventional GCM using a
single species microphysics scheme (left) and a 3-species microphysics
scheme (right).  The vertical axes are associated with ice growth
processes and the horizontal axes are associated with ice mass and/or
particle diameter and also particle fall velocity.  On the left figure, ice
growth processes are not distinguished and are all embedded within the
simplified parameterization.  On the right figure, deposition is the
primary process associated with cloud and snow, while riming is the
primary processes responsible for graupel formation.  On the left figure,
cloud ice is assumed to be floating, i.e. zero fall velocity, and the ice
deemed to be precipitating is removed immediately, i.e. infinite fall
velocity.  Shading is an indication of the density of particles.
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Figure 7. (upper) Mean annual MLS IWC (mg m-3; Version 2.2) at
215 hPa for 2007 (upper left) and the day minus night difference of the
IWC values (upper right), where the daytime (nighttime) values come
from the ascending (descending) portion of the orbits having local
equatorial crossing times of 1:30 pm (am).  (lower) Same as upper,
except for CloudSat IWC values for 2007 and for altitude of 11km (~
215 hPa).



Figure 8. (upper left) Histograms of IWC values from CloudSat, two periods for MLS and
two versions of the ECMWF analysis system (R30 and R31) for the periods 08/2006, 08/2005-
07/2006, 08/2006, 08/2005-07/2006 and 07/2006,, respectively.  The MLS and solid-line
CloudSat values are based on raw footprints.  The dashed-line CloudSat values is based on data
first aggregated to 1ox1o grid boxes. (upper right) CloudSat and ECMWF values shown are
same as left panel, additions are for GEOS5 (1/2006), and NASA fvMMFs for the periods
07/1998, where the latter includes values of graupel, snow, cloud and total ice.



Figure 9. Annual and zonal mean values of cloud ice water content
(IWC; mg m-3) from NCAR CAM3 (upper left; 1979-1999), NASA
GEOS5 (middle left; 01/1999-12/2002), ECMWF R30 analysis (lower
left; 08/2005-07/2006), fvMMF (upper right, 07/98 & 01/99), and RAVE
GCM (middle right; 1998).



Figure 10. Annual mean values of IWP (gm m-2) for graupel
(upper left), cloud ice (middle left), snow (lower left) and their sum
(upper right) from the RAVE GCM, along with their zonal mean
values (lower right) and percent contribution of each of the
constituents to the total ice (middle right) [black = total, red =
snow, graupel = blue, cloud = green].



Figure 11. Annual mean values of IWP (gm m-2) for graupel (upper
left), cloud ice (middle left), snow (lower left) and their sum (upper
right) from the NASA fvMMF GCM, along with their zonal mean
values (lower right) and percent contribution of each of the
constituents to the total ice (middle right) [black = total, red = snow,
graupel = blue, cloud = green].



Figure 12. Annual and zonal mean values of of IWC (mg m-3) for
graupel (upper), cloud ice (upper middle), snow (lower middle) and their
sum (lower) from the RAVE (left) and NASA fvMMF (right) GCMs.
Dotted line in lower panel at 300 hPa is for comparison purposes to
Figure 5.



Figure 13. Annual and zonal mean values of
CloudSat IWC (mg m-3) when considering clear
cases and those with IWC > 0 but flagged as having
no precipitation at the surface (NP; upper), cases
flagged as non-convective clouds (NC; middle), and
those cases that meet both these criteria (NP & NC;
lower).  Right panels are the same, except for
different plotting format for comparison to MLS
inset panel in upper right of Figure 5.  Lower left
panel gives the frequency of occurrence of the given
IWC > 0 condition, NC (red), NP (blue), and NP &
NC (green) relative to all (clear and IWC > 0) cases.

NPNP

NP & NCNP & NC

NCNC



Figure 14. (upper) Mean annual IWP (gm m-2)  for CloudSat
values flagged as both Non-Precipitating (NP) and Non-
Convective (NC) (8/2006-7/2007).  (lower) Same, except with
color scale matching Figure 3.



Figure 15. Mean annual IWC (mg m-3) at 215 hPa for MLS (upper
left; 8/2004-7/2006), CloudSat values flagged as both Non-
Precipitating (NP) and Non-Convective (NC) (upper right; 8/2006-
7/2007), GEOS5 (middle left; 1/1999-12/2002), ECMWF analysis
R30 (middle right; 8/2005-7/2006), and NCAR CAM3 (lower left;
1979-1999).



Figure 16. Mean May-July 2006  IWC (mg m-3) at 215 hPa for ECMWF
analysis R30 (upper left), R31 (upper right), the relative percent change
((R31 - R30)/R31*100), and the overlapping MLS values (lower right).


